In vitro FRET analysis of IRE1 and BiP association and dissociation upon endoplasmic reticulum stress
نویسندگان
چکیده
The unfolded protein response (UPR) is a key signaling system that regulates protein homeostasis within the endoplasmic reticulum (ER). The primary step in UPR activation is the detection of misfolded proteins, the mechanism of which is unclear. We have previously suggested an allosteric mechanism for UPR induction (Carrara et al., 2015) based on qualitative pull-down assays. Here, we develop an in vitro Förster resonance energy transfer (FRET) UPR induction assay that quantifies IRE1 luminal domain and BiP association and dissociation upon addition of misfolded proteins. Using this technique, we reassess our previous observations and extend mechanistic insight to cover other general ER misfolded protein substrates and their folded native state. Moreover, we evaluate the key BiP substrate-binding domain mutant V461F. The new experimental approach significantly enhances the evidence suggesting an allosteric model for UPR induction upon ER stress.
منابع مشابه
Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1.
Ire1 is a type I transmembrane protein located on the endoplasmic reticulum (ER). Upon ER stress, Ire1 releases the ER chaperone BiP and self-associates. This activates Ire1 and triggers the unfolded protein response in the yeast Saccharomyces cerevisiae. We isolated and characterized an Ire1 luminal domain mutant lacking both the N-terminal and the juxtamembrane loosely folded subregions. Alth...
متن کاملGenetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins.
In the unfolded protein response (UPR) signaling pathway, accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates a transmembrane kinase/ribonuclease Ire1, which causes the transcriptional induction of ER-resident chaperones, including BiP/Kar2. It was previously hypothesized that BiP/Kar2 plays a direct role in the signaling mechanism. In this model, association of BiP/Ka...
متن کاملTwo regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins
Chaperone protein BiP binds to Ire1 and dissociates in response to endoplasmic reticulum (ER) stress. However, it remains unclear how the signal transducer Ire1 senses ER stress and is subsequently activated. The crystal structure of the core stress-sensing region (CSSR) of yeast Ire1 luminal domain led to the controversial suggestion that the molecule can bind to unfolded proteins. We demonstr...
متن کاملA role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1
In the unfolded protein response, the type I transmembrane protein Ire1 transmits an endoplasmic reticulum (ER) stress signal to the cytoplasm. We previously reported that under nonstressed conditions, the ER chaperone BiP binds and represses Ire1. It is still unclear how this event contributes to the overall regulation of Ire1. The present Ire1 mutation study shows that the luminal domain poss...
متن کاملA J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response
When unfolded proteins accumulate in the endoplasmic reticulum (ER), the unfolded protein response (UPR) increases ER-protein-folding capacity to restore protein-folding homeostasis. Unfolded proteins activate UPR signaling across the ER membrane to the nucleus by promoting oligomerization of IRE1, a conserved transmembrane ER stress receptor. However, the coupling of ER stress to IRE1 oligomer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2018